




## **ENVIRONMENTAL PRODUCT DECLARATION** IN ACCORDANCE WITH EN 15804+A2 & ISO 14025 / ISO 21930

LS3000 Timber-module Lindner Scandinavia AB



### EPD HUB, EPDHUB-0321

Publishing date 4 March 2023, last updated date 4 March 2023, valid until 4 March 2028







### **GENERAL INFORMATION**

### MANUFACTURER

| Manufacturer    | Lindner Scandinavia AB                                                                                         |
|-----------------|----------------------------------------------------------------------------------------------------------------|
| Address         | Redegatan 1A, Göteborg, Sweden                                                                                 |
| Contact details | scandinavia@lindner-group.com                                                                                  |
| Website         | https://www.lindner-<br>group.com/en/company/lindner-<br>group/corporate-structure/lindner-scandinavia-<br>ab/ |

### **EPD STANDARDS, SCOPE AND VERIFICATION**

| Program operator   | EPD Hub, hub@epdhub.com                                                |
|--------------------|------------------------------------------------------------------------|
| Reference standard | EN 15804+A2:2019 and ISO 14025                                         |
| PCR                | EPD Hub Core PCR version 1.0, 1 Feb 2022                               |
| Sector             | Construction product                                                   |
| Category of EPD    | Third party verified EPD                                               |
| Scope of the EPD   | Cradle to gate with options, A4-A5, and modules C1-C4, D               |
| EPD author         | Amar Talic, Lindner Scandinavia AB                                     |
| EPD verification   | Independent verification of this EPD and data, according to ISO 14025: |
| EPD verifier       | N.C, as an authorized verifier acting for EPD Hub<br>Limited           |

The manufacturer has the sole ownership, liability, and responsibility for the EPD. EPDs within the same product category but from different programs may not be comparable. EPDs of construction products may not be comparable if they do not comply with EN 15804 and if they are not compared in a building context.

### PRODUCT

| Product name                      | LS3000 Timber-module                                                                                                          |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Additional labels                 | Timber-based pre-fabricated<br>façade module.                                                                                 |
| Product reference                 | Average covers Top module, Top<br>Corner module, Mid module, Mid<br>Corner module, Bottom module<br>and Bottom Corner module. |
| Place of production               | Munkedal, Västra Götalands län,<br>Sweden                                                                                     |
| Period for data                   | 2021                                                                                                                          |
| Averaging in EPD                  | Multiple products                                                                                                             |
| Variation in GWP-fossil for A1-A3 | -24 to +14 %                                                                                                                  |

### **ENVIRONMENTAL DATA SUMMARY**

| Declared unit                   | 1 unit   |
|---------------------------------|----------|
| Declared unit mass              | 612.8 kg |
| GWP-fossil, A1-A3 (kgCO2e)      | 1,06E3   |
| GWP-total, A1-A3 (kgCO2e)       | 6,77E2   |
| Secondary material, inputs (%)  | 9.92     |
| Secondary material, outputs (%) | 85.5     |
| Total energy use, A1-A3 (kWh)   | 6500.0   |
| Total water use, A1-A3 (m3e)    | 11.2     |







### PRODUCT AND MANUFACTURER

#### **ABOUT THE MANUFACTURER**

Lindner Scandinavia AB designs and installs complex interior and exterior building constructions in Sweden, Norway and Denmark. Concepts and products on exterior constructions are envelopes with structure of wood, glass, metal or composite that provide the optimal solution for the project. Together with the structure we integrate glass, ETFE-membrane and cladding that provide a technical and sustainable solution, without compromising the functionality or design.

#### **PRODUCT DESCRIPTION**

The wooden module consists of a glulam-based structural frame with an insulating glass and a closed field with stone wool insulation. The glass proportion is usually 30-60% of the modular area and in this calculation the glass proportion is 44% of the modular area for the weighted type module. The module can be designed in many ways to meet the individual customer's wishes and requirements, including size, glass design and above all the exterior cladding. Depending on the mentioned design variables and options, the U-value of the modular façade can vary between 0.4-0.7 W/m<sup>2</sup>K. The module is completely prefabricated, delivered when assembly is to take place, where it is hung on the building frame with specially designed steel fittings.

All reference modules (top, mid and bottom) are 2.4m wide and 0.3m thick, except the corner modules which are 1.0m wide on each side of the corner they cover. The top modules (standard and corner) are 5.0m high, the mid modules (standard and corner) are 3.8m high and the bottom modules (standard and corner) are 4.5m high. The average product has an area of 9.8  $m^2$ .

https://www.lindner-Further information can be found at group.com/en/company/lindner-group/corporate-structure/lindnerscandinavia-ab/.

Created with One Click LCA

### PRODUCT RAW MATERIAL MAIN COMPOSITION

| Raw material category | Amount, mass- % | Material origin |
|-----------------------|-----------------|-----------------|
| Metals                | 15              | Sweden          |
| Minerals              | 53              | Europe          |
| Fossil materials      | 13              | Europe          |
| Bio-based materials   | 19              | Sweden          |

#### **BIOGENIC CARBON CONTENT**

Product's biogenic carbon content at the factory gate

| FUNCTIONAL UNIT AND SERVICE LIFE           |       |
|--------------------------------------------|-------|
| Biogenic carbon content in packaging, kg C | 0     |
| Biogenic carbon content in product, kg C   | 104.7 |

### INCTIONAL UNIT AND SERVICE LIFE

| Declared unit          | 1 unit   |  |
|------------------------|----------|--|
| Mass per declared unit | 612.8 kg |  |
| Functional unit        |          |  |
| Reference service life |          |  |

### SUBSTANCES, REACH - VERY HIGH CONCERN

The product does not contain any REACH SVHC substances in amounts greater than 0,1 % (1000 ppm).



### **PRODUCT LIFE-CYCLE**

### SYSTEM BOUNDARY

This EPD covers the life-cycle modules listed in the following table.

|                      | rodu<br>stage |               |           | mbly<br>age | Use stage End of life stag |             |        |             |               |                           |                       |                  | age       | Beyond the<br>system<br>boundaries |           |       |          |           |  |
|----------------------|---------------|---------------|-----------|-------------|----------------------------|-------------|--------|-------------|---------------|---------------------------|-----------------------|------------------|-----------|------------------------------------|-----------|-------|----------|-----------|--|
| <b>A1</b>            | A2            | A3            | A4        | A5          | B1                         | B2          | B3     | B4          | B5            | B6                        | B7                    | C1               | C2        | <b>C3</b>                          | <b>C4</b> |       | D        |           |  |
| x                    | x             | x             | x         | x           | MND                        | MND         | MND    | MND         | MND           | MND                       | MND                   | x                | ×         | x                                  | x         | x     |          |           |  |
| <b>Raw materials</b> | Transport     | Manufacturing | Transport | Assembly    | Use                        | Maintenance | Repair | Replacement | Refurbishment | Operational<br>energy use | Operational water use | Deconstr./demol. | Transport | Waste processing                   | Disposal  | Reuse | Recovery | Recycling |  |

Modules not declared = MND. Modules not relevant = MNR.

### MANUFACTURING AND PACKAGING (A1-A3)

The environmental impacts considered for the product stage cover the manufacturing of raw materials used in the production as well as packaging materials and other ancillary materials. Also, fuels used by machines, and handling of waste formed in the production processes at the manufacturing facilities are included in this stage. The study does not considers the material losses occurring during the manufacturing processes.

All raw materials, such as timber, glass, aluminium and insulation are produced by different suppliers, Lindner Scandinavia AB does not produce any raw material by themselves but only assemble the different components into one complete product. The materials arrive to the manufacturing site with exact dimensions/quantities and there are therefore no, or not measurable, production losses.

All the materials, except the insulating glass units and sealants, are manufactured/produced in Sweden. The insulating glass units are



produced in Estonia and the sealants by a manufacturer in Germany. The environmental impacts covers transportation of raw materials to the manufacturing site in Munkedal, Sweden. All raw material are transported to the manufacturing site by lorry and the insulating glass units are also transported by ferry between Estonia and Sweden.

The modules are produced and assembled in a heated warehouse in Munkedal, Sweden, where they also are stored in a dry and unheated storage unit until transported to construction site. The production is manual, where simpler tools are used, such as screwdrivers and electric travelling overhead crane. Transports on the production site are mainly done by diesel forklift and electric travelling overhead crane.

### **TRANSPORT AND INSTALLATION (A4-A5)**

Transportation impacts occurred from final products delivery to construction site (A4) cover fuel direct exhaust emissions, environmental impacts of fuel production, as well as related infrastructure emissions.

A module is placed lying down in a steel stand (transportation frame), which is then stacked and wrapped in plastic to weatherproof the transport. A stack consists of four stands and four modules. Transport to the construction site is carried out by truck and trailer where 12-16 modules can be loaded and transported. The truck delivering modules also returns empty racks back to the production site which is also factored into the design.

The installation of modules takes place with the help of a crane truck and telehandler. The crane truck lifts the module up at the top while the telehandler supports at the bottom to straighten the module from its horizontal position in the rack.







### **PRODUCT USE AND MAINTENANCE (B1-B7)**

This EPD does not cover the use phase. Air, soil, and water impacts during the use phase have not been studied.

### **PRODUCT END OF LIFE (C1-C4, D)**

The modules can be taken down in the same way as they are installed on the building, once on the ground the materials can be separated without major procedures but require some processing. Since the modules in their entirety cannot be handled by recycling centres, demolition on site is a must in order to be able to transport the waste.

Glass, aluminium, insulation and steel are materials that are assumed to be recycled to varying degrees, while the fibre cement boards are assumed to be sent to landfill. The remaining materials, plastic and sealing materials are directly sent to municipal incineration and all of the wood is converted to secondary fuel.

According to the Swedish waste treatment operator Renova, glass and mineral wool are, if clean, 100% is recycled. The mineral wool is collected by Renova in this case and sent to mineral wool producers for re-use in different ways. The same applies for flat glass panes, although, only clean glass which they sort out is forwarded. Due to the sealants/glue and spacers in the insulating glass units, 5% have been assumed to be landfilled with accordance to the insulation glass unit manufacturer. 92% of the steel products and 95% of the aluminium is assumed to be recycled according to the Geological Survey of Sweden (SGU).

All of the wood waste collected is chipped and sent to various Combined Heat and Power (CHP) plants according to the Swedish waste treatment operator Renova. Remaining materials are either 100% landfilled or 100% incinerated as mixed waste.





### **MANUFACTURING PROCESS**

### Timber frame assembly

Glulam beams assembled for structural frame

One Click





### Closed field assembly

Fibre cement board Steel sheet

### Glass unit installation

Insulating glass unit inserted in frame

### Packaging of module

Weather proofing for transport and storage with plastic film

### Dryseal installation Silicone rubber profile around the

frame

# Exterior cladding installation

Steel sheet/wood panel or other exterior cladding is installed to cover the closed field





### LIFE-CYCLE ASSESSMENT

### **CUT-OFF CRITERIA**

The study does not exclude any modules or processes which are stated mandatory in the reference standard and the applied PCR. The study does not exclude any hazardous materials or substances. The study includes all major raw material and energy consumption. All inputs and outputs of the unit processes, for which data is available for, are included in the calculation. There is no neglected unit process more than 1% of total mass or energy flows. The module specific total neglected input and output flows also do not exceed 5% of energy usage or mass.

### ALLOCATION, ESTIMATES AND ASSUMPTIONS

Allocation is required if some material, energy, and waste data cannot be measured separately for the product under investigation. All allocations are done as per the reference standards and the applied PCR. In this study, allocation has been done in the following ways:

| Data type                      | Allocation    |
|--------------------------------|---------------|
| Raw materials                  | No allocation |
| Packaging materials            | No allocation |
| Ancillary materials            | No allocation |
| Manufacturing energy and waste | No allocation |

#### **AVERAGES AND VARIABILITY**

| Type of average                   | Multiple products                  |
|-----------------------------------|------------------------------------|
| Averaging method                  | Averaged by shares of total volume |
| Variation in GWP-fossil for A1-A3 | -24 to +14 %                       |

The raw material amounts are averaged based on six types of occurring modules in a standard facade. The six types averaged are;

- Standard-mid-area module (63%)
- Top module (16%)
- Bottom module (16%)
- Standard corner module (4%)
- Top corner module (1%)
- Bottom corner module (1%)

The percentage following each module type represents the production share of each type for a typical facade. The manufacturing, transport and packaging is identical for each module type, so the only difference is the size and therefore the raw material quantities.

#### LCA SOFTWARE AND BIBLIOGRAPHY

This EPD has been created using One Click LCA EPD Generator. The LCA and EPD have been prepared according to the reference standards and ISO 14040/14044. Ecoinvent and One Click LCA databases were used as sources of environmental data.





### **ENVIRONMENTAL IMPACT DATA**

### CORE ENVIRONMENTAL IMPACT INDICATORS - EN 15804+A2, PEF

| Impact category                     | Unit       | A1      | A2      | A3      | A1-A3   | A4      | A5      | B1  | B2  | B3  | B4  | B5  | B6  | B7  | C1      | C2      | С3      | C4      | D        |
|-------------------------------------|------------|---------|---------|---------|---------|---------|---------|-----|-----|-----|-----|-----|-----|-----|---------|---------|---------|---------|----------|
| GWP – total <sup>1)</sup>           | kg CO₂e    | 5,74E2  | 4,1E1   | 6,17E1  | 6,77E2  | 7,02E1  | 1,44E2  | MND | 1,01E2  | 5,01E0  | 4,12E2  | 1,79E0  | -7,98E2  |
| GWP – fossil                        | kg CO2e    | 9,52E2  | 4,1E1   | 6,27E1  | 1,06E3  | 7,08E1  | 1,44E2  | MND | 1,01E2  | 5E0     | 2,84E1  | 8,82E-1 | -5,78E2  |
| GWP – biogenic                      | kg CO2e    | -3,83E2 | 1,66E-2 | -1,01E0 | -3,84E2 | 3,81E-2 | 2,89E-2 | MND | 2,81E-2 | 2,69E-3 | 3,83E2  | 9,07E-1 | -2,16E2  |
| GWP – LULUC                         | kg CO2e    | 5,07E0  | 1,66E-2 | 3,69E-2 | 5,13E0  | 2,56E-2 | 8,67E-3 | MND | 8,54E-3 | 1,81E-3 | 8,78E-3 | 4,45E-4 | -3,97E0  |
| Ozone depletion pot.                | kg CFC-11e | 9,81E-5 | 9,13E-6 | 1,8E-6  | 1,09E-4 | 1,61E-5 | 2,19E-5 | MND | 2,18E-5 | 1,14E-6 | 1,04E-6 | 2,67E-7 | -5,47E-5 |
| Acidification potential             | mol H⁺e    | 1,02E1  | 3,32E-1 | 2,2E-1  | 1,08E1  | 2,03E-1 | 1,06E0  | MND | 1,06E0  | 1,44E-2 | 6,42E-2 | 7,46E-3 | -5,07E0  |
| EP-freshwater <sup>2)</sup>         | kg Pe      | 9,15E-2 | 3,18E-4 | 1,62E-3 | 9,35E-2 | 6,02E-4 | 4,14E-4 | MND | 4,09E-4 | 4,26E-5 | 4,63E-4 | 1,61E-5 | -2,69E-2 |
| EP-marine                           | kg Ne      | 3,68E0  | 7,79E-2 | 4,36E-2 | 3,8E0   | 4,04E-2 | 4,7E-1  | MND | 4,67E-1 | 2,85E-3 | 1,32E-2 | 2,5E-3  | -7,03E-1 |
| EP-terrestrial                      | mol Ne     | 2,81E1  | 8,66E-1 | 4,79E-1 | 2,95E1  | 4,5E-1  | 5,15E0  | MND | 5,12E0  | 3,18E-2 | 1,52E-1 | 2,75E-2 | -9,32E0  |
| POCP ("smog") <sup>3)</sup>         | kg NMVOCe  | 3,74E0  | 2,5E-1  | 2,01E-1 | 4,19E0  | 1,73E-1 | 1,42E0  | MND | 1,41E0  | 1,22E-2 | 4,17E-2 | 7,96E-3 | -2,64E0  |
| ADP-minerals & metals <sup>4)</sup> | kg Sbe     | 5,91E-1 | 9,82E-4 | 4,56E-4 | 5,93E-1 | 1,95E-3 | 1,64E-4 | MND | 1,54E-4 | 1,38E-4 | 2,27E-4 | 9,29E-6 | -1,11E-2 |
| ADP-fossil resources                | MJ         | 1,67E4  | 6,03E2  | 2,29E3  | 1,96E4  | 1,07E3  | 1,4E3   | MND | 1,39E3  | 7,57E1  | 1,16E2  | 2,04E1  | -7,03E3  |
| Water use <sup>5)</sup>             | m³e depr.  | 2,93E2  | 1,85E0  | 1,45E2  | 4,4E2   | 3,5E0   | 2,68E0  | MND | 2,6E0   | 2,48E-1 | 2E0     | 9,04E-1 | -1,3E2   |

### **USE OF NATURAL RESOURCES**

| Impact category                    | Unit           | A1       | A2      | A3     | A1-A3    | A4      | A5      | B1  | B2  | B3  | B4  | B5  | B6  | B7  | C1      | C2      | СЗ      | C4      | D       |
|------------------------------------|----------------|----------|---------|--------|----------|---------|---------|-----|-----|-----|-----|-----|-----|-----|---------|---------|---------|---------|---------|
| Renew. PER as energy <sup>8)</sup> | MJ             | 4,65E3   | 7,9E0   | 7,4E1  | 4,73E3   | 1,53E1  | 7,63E0  | MND | 7,53E0  | 1,08E0  | 1,41E1  | 3,58E-1 | -3,15E3 |
| Renew. PER as material             | MJ             | 3,07E3   | 0E0     | 0E0    | 3,07E3   | 0E0     | 0E0     | MND | 0E0     | 0E0     | -3,06E3 | -5,1E0  | 3,05E3  |
| Total use of renew. PER            | MJ             | 7,72E3   | 7,9E0   | 7,4E1  | 7,8E3    | 1,53E1  | 7,63E0  | MND | 7,53E0  | 1,08E0  | -3,05E3 | -4,74E0 | -1,08E2 |
| Non-re. PER as energy              | MJ             | 1,64E4   | 6,03E2  | 1,61E3 | 1,87E4   | 1,07E3  | 1,4E3   | MND | 1,39E3  | 7,57E1  | 1,16E2  | 2,04E1  | -7,03E3 |
| Non-re. PER as material            | MJ             | 6,26E2   | 0E0     | 5,78E2 | 1,2E3    | 0E0     | -6,74E2 | MND | 0E0     | 0E0     | -5,23E2 | -7,4E0  | 4,16E2  |
| Total use of non-re. PER           | MJ             | 1,71E4   | 6,03E2  | 2,19E3 | 1,99E4   | 1,07E3  | 7,23E2  | MND | 1,39E3  | 7,57E1  | -4,07E2 | 1,3E1   | -6,61E3 |
| Secondary materials                | kg             | 6,06E1   | 0E0     | 2,2E-1 | 6,08E1   | 0E0     | 0E0     | MND | 0E0     | 0E0     | 0E0     | 0E0     | 2,23E2  |
| Renew. secondary fuels             | MJ             | 3,41E-19 | 0E0     | 0E0    | 3,41E-19 | 0E0     | 0E0     | MND | 0E0     | 0E0     | 0E0     | 0E0     | 0E0     |
| Non-ren. secondary fuels           | MJ             | 9,77E-4  | 0E0     | 0E0    | 9,77E-4  | 0E0     | 0E0     | MND | 0E0     | 0E0     | 0E0     | 0E0     | 0E0     |
| Use of net fresh water             | m <sup>3</sup> | 9,7E0    | 9,67E-2 | 1,44E0 | 11.2     | 1,85E-1 | 1,33E-1 | MND | 1,23E-1 | 1,31E-2 | 7,68E-2 | 2,28E-2 | -3,81E0 |







8) PER = Primary energy resources.

### **END OF LIFE – WASTE**

| Impact category     | Unit | A1      | A2      | A3      | A1-A3   | A4      | A5      | B1  | B2  | B3  | B4  | B5  | B6  | B7  | C1      | C2      | C3  | C4      | D        |
|---------------------|------|---------|---------|---------|---------|---------|---------|-----|-----|-----|-----|-----|-----|-----|---------|---------|-----|---------|----------|
| Hazardous waste     | kg   | 9,96E1  | 6,26E-1 | 2,44E0  | 1,03E2  | 1,1E0   | 1,79E0  | MND | 1,5E0   | 7,79E-2 | 0E0 | 4,94E-2 | -8,15E1  |
| Non-hazardous waste | kg   | 1,73E3  | 3,75E1  | 6,96E1  | 1,84E3  | 7,59E1  | 2,99E1  | MND | 1,6E1   | 5,36E0  | 0E0 | 8,32E1  | -8,84E2  |
| Radioactive waste   | kg   | 1,49E-1 | 4,15E-3 | 2,15E-2 | 1,74E-1 | 7,33E-3 | 9,76E-3 | MND | 9,74E-3 | 5,18E-4 | 0E0 | 1,22E-4 | -2,68E-2 |

### **END OF LIFE – OUTPUT FLOWS**

| Impact category          | Unit | A1       | A2  | A3     | A1-A3    | A4  | A5     | B1  | B2  | B3  | B4  | B5  | B6  | B7  | C1  | C2  | С3     | C4  | D   |
|--------------------------|------|----------|-----|--------|----------|-----|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|--------|-----|-----|
| Components for re-use    | kg   | 0E0      | 0E0 | 0E0    | 0E0      | 0E0 | 0E0    | MND | 0E0 | 0E0 | 0E0    | 0E0 | 0E0 |
| Materials for recycling  | kg   | 5,76E1   | 0E0 | 0E0    | 5,76E1   | 0E0 | 0E0    | MND | 0E0 | 0E0 | 4,09E2 | 0E0 | 0E0 |
| Materials for energy rec | kg   | 1,44E-11 | 0E0 | 0E0    | 1,44E-11 | 0E0 | 0E0    | MND | 0E0 | 0E0 | 1,15E2 | 0E0 | 0E0 |
| Exported energy          | MJ   | 2,48E-1  | 0E0 | 6,98E1 | 7E1      | 0E0 | 4,92E2 | MND | 0E0 | 0E0 | 5,99E1 | 0E0 | 0E0 |





### ENVIRONMENTAL IMPACTS – EN 15804+A1, CML / ISO 21930

| Impact category      | Unit                               | A1      | A2      | A3      | A1-A3   | A4      | A5      | B1  | B2  | B3  | B4  | B5  | <b>B6</b> | B7  | <b>C1</b> | C2      | С3      | C4      | D        |
|----------------------|------------------------------------|---------|---------|---------|---------|---------|---------|-----|-----|-----|-----|-----|-----------|-----|-----------|---------|---------|---------|----------|
| Global Warming Pot.  | kg CO₂e                            | 1,16E3  | 4,07E1  | 5,99E1  | 1,26E3  | 7,02E1  | 1,43E2  | MND | MND | MND | MND | MND | MND       | MND | 1E2       | 4,96E0  | 2,82E1  | 8,65E-1 | -5,67E2  |
| Ozone depletion Pot. | kg CFC-11e                         | 9,65E-5 | 7,27E-6 | 1,71E-6 | 1,05E-4 | 1,28E-5 | 1,73E-5 | MND | MND | MND | MND | MND | MND       | MND | 1,73E-5   | 9,06E-7 | 9,17E-7 | 2,13E-7 | -4,89E-5 |
| Acidification        | kg SO₂e                            | 7,08E0  | 2,56E-1 | 1,81E-1 | 7,51E0  | 1,43E-1 | 1,53E-1 | MND | MND | MND | MND | MND | MND       | MND | 1,49E-1   | 1,01E-2 | 7,25E-2 | 5,5E-2  | -2,9E0   |
| Eutrophication       | kg PO <sub>4</sub> <sup>3</sup> e  | 1,88E0  | 3,52E-2 | 6,14E-2 | 1,98E0  | 2,95E-2 | 2,97E-2 | MND | MND | MND | MND | MND | MND       | MND | 2,63E-2   | 2,09E-3 | 2,09E-2 | 1,2E-3  | -9,19E-1 |
| POCP ("smog")        | kg C <sub>2</sub> H <sub>4</sub> e | 3,87E-1 | 8,9E-3  | 2,24E-2 | 4,19E-1 | 8,55E-3 | 1,54E-2 | MND | MND | MND | MND | MND | MND       | MND | 1,54E-2   | 6,04E-4 | 2,04E-3 | 2,32E-4 | -2,21E-1 |
| ADP-elements         | kg Sbe                             | 5,91E-1 | 9,82E-4 | 4,56E-4 | 5,93E-1 | 1,95E-3 | 1,64E-4 | MND | MND | MND | MND | MND | MND       | MND | 1,54E-4   | 1,38E-4 | 2,27E-4 | 9,29E-6 | -1,11E-2 |
| ADP-fossil           | MJ                                 | 1,67E4  | 6,03E2  | 2,29E3  | 1,96E4  | 1,07E3  | 1,4E3   | MND | MND | MND | MND | MND | MND       | MND | 1,39E3    | 7,57E1  | 1,16E2  | 2,04E1  | -7,03E3  |





### **VERIFICATION STATEMENT**

### **VERIFICATION PROCESS FOR THIS EPD**

This EPD has been verified in accordance with ISO 14025 by an independent, third-party verifier by reviewing results, documents and compliancy with reference standard, ISO 14025 and ISO 14040/14044, following the process and checklists of the program operator for:

- This Environmental Product Declaration
- The Life-Cycle Assessment used in this EPD
- The digital background data for this EPD

Why does verification transparency matter? Read more online This EPD has been generated by One Click LCA EPD generator, which has been verified and approved by the EPD Hub.

#### THIRD-PARTY VERIFICATION STATEMENT

I hereby confirm that, following detailed examination, I have not established any relevant deviations by the studied Environmental Product Declaration (EPD), its LCA and project report, in terms of the data collected and used in the LCA calculations, the way the LCA-based calculations have been carried out, the presentation of environmental data in the EPD, and other additional environmental information, as present with respect to the procedural and methodological requirements in ISO 14025:2010 and reference standard. I confirm that the company-specific data has been examined as regards plausibility and consistency; the declaration owner is responsible for its factual integrity and legal compliance.

I confirm that I have sufficient knowledge and experience of construction products, this specific product category, the construction industry, relevant standards, and the geographical area of the EPD to carry out this verification.

I confirm my independence in my role as verifier; I have not been involved in the execution of the LCA or in the development of the declaration and have no conflicts of interest regarding this verification.

Neena Chandramathy, as an authorized verifier acting for EPD Hub Limited 06.03.2023





